On coding labeled trees

نویسندگان

  • Saverio Caminiti
  • Irene Finocchi
  • Rossella Petreschi
چکیده

We consider the problem of coding labeled trees by means of strings of node labels. Different codes have been introduced in the literature by Prüfer, Neville, and Deo and Micikevičius. For all of them, we show that both coding and decoding can be reduced to integer (radix) sorting, closing several open problems within a unified framework that can be applied both in a sequential and in a parallel setting. Our sequential coding and decoding schemes require optimal O(n) time when applied to n-node trees, yielding the first linear time decoding algorithm for a code presented by Neville. These schemes can be parallelized on the EREW PRAM model, so as to work in O(log n) time with cost O(n), O(n √ log n), or O(n log n), depending on the code and on the operation: in all cases, they either match or improve the performances of the best ad-hoc approaches known so far.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bijective Code for k -Trees with Linear Time Encoding and Decoding

The problem of coding labeled trees has been widely studied in the literature and several bijective codes that realize associations between labeled trees and sequences of labels have been presented. k-trees are one of the most natural and interesting generalizations of trees and there is considerable interest in developing efficient tools to manipulate this class, since many NP-Complete problem...

متن کامل

A Unified Approach to Coding Labeled Trees

We consider the problem of coding labeled trees by means of strings of node labels and we present a unified approach based on a reduction of both coding and decoding to integer (radix) sorting. Applying this approach to four well-known codes introduced by Prüfer [18], Neville [17], and Deo and Micikevicius [5], we close some open problems. With respect to coding, our general sequential algorith...

متن کامل

Periodicities on Trees

We introduce the notion of periodicity for k-ary labeled trees: roughly speaking, a tree is periodic if it can be obtained by a sequence of concatenations of a smaller tree plus a \remainder". The period is the shape of such smaller tree (i.e. the corresponding unlabeled tree). This deenition reduces to the classical one for string when restricted to the case of unary trees. Then, we deene the ...

متن کامل

Limit distribution of the degrees in scaled attachment random recursive trees

We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...

متن کامل

An Even Faster and More Unifying Algorithm for Comparing Trees via Unbalanced Bipartite Matchings

A widely used method for determining the similarity of two labeled trees is to compute a maximum agreement subtree of the two trees. Previous work on this similarity measure is only concerned with the comparison of labeled trees of two special kinds, namely, uniformly labeled trees (i.e., trees with all their nodes labeled by the same symbol) and evolutionary trees (i.e., leaf-labeled trees wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 382  شماره 

صفحات  -

تاریخ انتشار 2007